PRACTICE QUESTIONS FOR COMPETITIVE EXAMINATIONS

SUB: MATHEMATICS

TOPIC 4: AREA UNDER THE CURVE

The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x-axis is -

The area enclosed between the curve $y = \log_e(x + e)$ and the coordinate axes is -

	(A) 4	(B) 3	(C) 2	(D) 1			
3.	The area of the figure bounded by the curves $y = \ell nx & y = (\ell nx)^2$ is -						
	(A) e + 1	(B) e − 1	(C) 3 – e	(D) 1			
4.	Suppose $y = f(x)$ and $y = g(x)$	g(x) are two functions whose	grahps intersect at three point	s (0, 4), (2, 2) and (4, 0) with			
	$f(x) > g(x)$ for $0 \le x \le 2$ and $f(x) \le g(x)$ for $2 \le x \le 4$.						
	If $\int_{0}^{4} [f(x) - g(x)] dx = 10$ are	and $\int_{2}^{4} [g(x) - f(x)] dx = 5$, the a	area between two curves for () < x < 2, is -			
	(A) 5	(B) 10	(C) 15	(D) 20			
5.	(A) cannot be determined		(B) is 1/3	(C) is 2/3			
	(D) is same as that of the	figure bounded by the curves	$y = \sqrt{-x}$; $x \le 0$ and $x = 0$	$\sqrt{-y}$; $y \le 0$			
6.	The area of the closed figure bounded by $y = x$, $y = -x$ & the tangent to the curve $y = \sqrt{x^2 - 5}$ at the point (3, 2) is -						
	(A) 5	(B) 2√5	(C) 10	(D) $\frac{5}{2}$			
7.	The area of the region(s) enclosed by the curves $y = x^2$ and $y = \sqrt{ x }$ is -						
	(A) 1/3	(B) 2/3	(C) 1/6	(D) 1			
8.		curve $y = xe^{-x}$; $xy = 0$ and	x = c, where c is the x-coon	finate of the curve's inflection			
	point, is -	(B) 1 − 2e ⁻²	(C) 1 - e ⁻²	m 1			
	(A) 1 – 3e ⁻²	(2)	, , ,	(D) 1			
9.	The area enclosed by the curves $y = \cos x$, $y = 1 + \sin 2x$ and $x = \frac{3\pi}{2}$ as x varies from 0 to $\frac{3\pi}{2}$, is -						
	(A) $\frac{3\pi}{2}$ – 2	(B) $\frac{3\pi}{2}$	(C) $2 + \frac{3\pi}{2}$	(D) $1 + \frac{3\pi}{2}$			
10.	The area enclosed by the c	surve $y^2 + x^4 = x^2$ is -					
	(A) $\frac{2}{3}$	(B) $\frac{4}{3}$	(C) $\frac{8}{3}$	(D) $\frac{10}{3}$			
11.	Consider two curves C, : y	$y = \frac{1}{x}$ and $C_{\alpha} : y = \ell nx$ on	the xy plane. Let D, denote	es the region surrounded by			
	Consider two curves $C_1: y = \frac{1}{x}$ and $C_2: y = \ell n x$ on the xy plane. Let D_1 denotes the region surrounded by C_1 , C_2 and the line $x = 1$ and D_2 denotes the region surrounded by C_1 , C_2 and the line $x = a$. If $D_1 = D_2$ then the value of 'a' -						
	(A) e/2	(B) e	(C) e - 1	(D) 2(e - 1)			
12.	~	which 0 < y < 3 - 2x - x ² 8	k x > 0 is -				
			(C) $\int_{0}^{1} (3-2x-x^{2})dx$	(D) $\int_{1}^{3} (3-2x-x^{2})dx$			

13. The area bounded by the curves $y = x(1 - \ell nx)$ and positive x-axis between $x = e^{-1}$ and x = e is -

(A)
$$\left(\frac{e^2 - 4e^{-2}}{5}\right)$$

(B)
$$\left(\frac{e^2 - 5e^{-2}}{4}\right)$$
 (C) $\left(\frac{4e^2 - e^{-2}}{5}\right)$ (D) $\left(\frac{5e^2 - e^{-2}}{4}\right)$

(C)
$$\left(\frac{4e^2 - e^{-2}}{5}\right)$$

(D)
$$\left(\frac{5e^2 - e^{-2}}{4}\right)$$

14. The curve f(x) = Ax² + Bx + C passes through the point (1, 3) and line 4x + y = 8 is tangent to it at the point (2, 0). The area enclosed by y = f(x), the tangent line and the y-axis is -

(A) 4/3

(B) 8/3

(C) 16/3

(D) 32/3

15. Let y = g(x) be the inverse of a bijective mapping $f: R \rightarrow Rf(x) = 3x^3 + 2x$. The area bounded by graph of g(x), the x-axis and the ordinate at x = 5 is

(A) $\frac{5}{4}$

(B) $\frac{7}{4}$

(C) $\frac{9}{4}$

(D) $\frac{13}{4}$

16. A function y = f(x) satisfies the differential equation, $\frac{dy}{dx} - y = \cos x - \sin x$, with initial condition that y is bounded when $x \to \infty$. The area enclosed by y = f(x), $y = \cos x$ and the y-axis in the 1^{st} quadrant is

(A) $\sqrt{2} - 1$

(B) √2

(C) 1

(D) $\frac{1}{\sqrt{2}}$

17. Let 'a' be a positive constant number. Consider two curves $C_1 : y = e^x$, $C_2 : y = e^{a^{-x}}$. Let S be the area of the part surrounding by C1, C2 and the y-axis, then

(A) $\lim_{n \to \infty} S = 1$

(B) $\lim_{a\to 0} \frac{s}{a^2} = \frac{1}{4}$

(C) Range of S is [0,∞)

(D) S(a) is neither odd nor even

18. Area enclosed by the curve $y = \sin x$ between $x = 2n\pi$ to $x = 2(n+1)\pi$ is-

(A) $\int_{0}^{2\pi} \sin x \, dx$

(B) $2\int_{0}^{\pi} \sin x \, dx$ (C) $4\int_{0}^{\pi/2} \sin x \, dx$

19. If (a, 0) & (b,0) [a,b > 0] are the points where the curve $y = \sin 2x - \sqrt{3} \sin x$ cuts the positive x-axis first & second time, A & B are the areas bounded by the curve & positive x-axis between x=0 to x=a and x = a to x=b respectively, then -

(A) $4A + 8 \cos a = 7$

(B) AB = $\frac{1}{16}$

(C) 4A + 4B + 14cosb = 0 (D) B - A = 4cos a

20. For which of the following values of m, is the area of the region bounded by the curve $y = x - x^2$ and the line y = mx equals to 9/2?

(A) -4

(B) -2

(C) 2

(D) 4

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	D	С	С	В	Α	В	Α	С	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	С	В	В	D	Α	A,B,C,D	B,C,D	A,B,C,D	B,D